10166. Max-heap

 

Given an array of integers.  Rearrange its elements to form a max-heap.

 

Input. The first line contains the number of elements in the array n (n ≤ 1000).

The second line contains n integers, each with an absolute value not exceeding 106.

 

Output. Print the rearranged array representing a max-heap. If there are multiple solutions, print any one of them.

 

Sample input

Sample output

6

5 3 2 7 1 10

10 7 5 3 1 2

 

 

SOLUTION

heap

 

Algorithm analysis

Store the input data in an array a. For all indices from n / 2 down to 1, apply the heapify procedure in sequence. As a result, the array will be transformed into a max-heap.

 

Example

Below are the initial array and the final array that represents a heap.

 

Algorithm implementation

Declare an array that will later be transformed into a heap.

 

#define MAX 1001

int a[MAX];

 

The left function returns the index of the left son.

 

int left(int i)

{

  return 2 * i;

}

 

The right function returns the index of the right son.

 

int right(int i)

{

  return 2 * i + 1;

}

 

The swap function exchanges the elements at indices i and j.

 

void swap(int &i, int &j)

{

  int temp = i;  i = j; j = temp;

}

 

The heapify function restores the heap property for the subtree rooted at the node with index i. The third parameter n defines the size of the maintained heap.

 

void heapify(int a[], int i, int n)

{

  int largest = 0;

  int l = left(i);

  int r = right(i);

 

Find the index of the largest element among the current element a[i] and its children a[l] and a[r].

 

  if (l <= n && a[l] > a[i]) largest = l;

  else largest = i;

  if (r <= n && a[r] > a[largest]) largest = r;

 

If a[i] is not the largest element, swap it with the largest son and then recursively restore the heap property in the corresponding subtree (left or right).

 

  if (largest != i)

  {

    swap(a[i], a[largest]);

    heapify(a, largest, n);

  }

}

 

The main part of the program. Read the input array starting from index 1.

 

scanf("%d", &n);

for (i = 1; i <= n; i++)

  scanf("%d", &a[i]);

 

For all indices from n / 2 down to 1, perform the heapify procedure in sequence.

 

for (i = n / 2; i > 0; i--)

  heapify(a, i, n);

 

Print the resulting array, which represents a max-heap.

 

for (i = 1; i <= n; i++)

  printf("%d ", a[i]);

printf("\n");

 

Java implementation

 

import java.util.*;

 

public class Main

{

  static int left(int i)

  {

    return 2 * i;

  }

 

  static int right(int i)

  {

    return 2 * i + 1;

  }

 

  static void swap(int a[], int i, int j)

  {

    int temp = a[i];  a[i] = a[j]; a[j] = temp;

  }

 

  //max - heap

  static void heapify(int a[], int i, int n) // n = size of a heap

  {

    int largest = 0;

    int l = left(i);

    int r = right(i);

 

    if (l <= n && a[l] > a[i]) largest = l;

    else largest = i;

    if (r <= n && a[r] > a[largest]) largest = r;

 

    if (largest != i)

    {

      swap(a, i, largest);

      heapify(a, largest, n);

    }

  }

 

  public static void main(String[] args) {

    Scanner con = new Scanner(System.in);    

    int n = con.nextInt();

    int m[] = new int[n+1];

    for(int i = 1; i <= n; i++)

      m[i] = con.nextInt();

   

    for(int i = n / 2; i > 0; i--)

      heapify(m,i,n);

   

    for(int i = 1; i <= n; i++)

      System.out.print(m[i] + " ");

    System.out.println();

    con.close();

  }

}